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0. Introduction. The currently prevailing emphasis in Differential Calculus on the derivative at the expense
of, for instance, differentiability does not result from mathematical or pedagogical considerations. For instance, why
should the definition of continuity, a property of f, be followed with the definition of the derivative, a function,
rather than with the definition of differentiability, a stronger property of f ? Or, to put it another way, why should
Differential Calculus be based on the notion of derivative in dimension 1 when it must be based on that of differen-
tiability in all other dimensions? Typically, students are warned that "[while] for functions of one variables, the
terms "differentiable" and "has a derivative" are synonymous, [...] for functions of two variables differentiability is a
more stringent requirement than the existence of partial derivatives" [1] but little explanation is offered and the
subsequent treatment of the total derivative is generally disappointing1 .

But, to quote Dieudonné [9] at some length, "the fundamental idea of Calculus [is] the 'local' approximation of
functions by linear functions. In the classical teaching of Calculus, this idea is immediately obscured by the acci-
dental fact that, on a one-dimensional vector space, there is a one-to-one correspondence between linear forms and
numbers, and therefore the derivative at a point is defined as a number instead of a linear form. This slavish sub-
servience to the shiboleth of numerical interpretations at any cost becomes much worse when dealing with functions
of several variables: one thus arrives, for instance, at the classical formula giving the partial derivatives of a
composite function, which has lost any trace of intuitive meaning, whereas the natural statement of the theorem is
of course that the (total) derivative of a composite function is the composite of their derivatives, a very sensible
formulation when one thinks in terms of linear approximations."

For real valued functions to represent the way situations change, the differential calculus, the "mathematics of
change", must derive local information—about (mostly) gradual2  changes—from punctual information. The desired
information can be qualitative—is f near x0 positive/negative, increasing/decreasing, concave up/concave down?— or
quantitative—what is the approximate value, rate of change, concavity of f near x0? But, qualitatively, we might also
want to know whether, at x0, f is continuous or differentiable while, quantitatively, we might ask what the jump or
the slope is. That "fat calculus texts" are topics based and far from being organized along such lines is probably the
single most important reason why they have turned into "cookbooks": It is difficult to see how the "fragmentation
problem [ ...] can be resolved by adding an additional semester to the calculus course" [2].

We hope to show that to study functions by way of their local polynomial approximations is considerably more
natural than, to quote Lagrange, "seeing derivatives in isolation". Specifically, we will argue that the systematic use
of polynomial approximations has for the differential study of functions of one real variable much the same advan-
tages that the use of decimal numbers has for the study of real numbers in that: i.  it organizes, unifies and
simplifies it [13], ii. it extends, naturally, to the Frechet derivative in multivariable calculus [12], to Banach
Spaces, and to jets in Differential Topology [6] and, last but not least, iii. not only are the "naïve" proofs in this
setting natural and plausible, but they are easily made rigorous.

The benefits of this approach, essentially due to Lagrange [15] and [16] have begun to be recognized. For in-
stance, I. Bivins has by now received two prizes for his article "What a Tangent Line is When it isn't a Limit" [4].
The committee's citation for the Polya prize reads in part: "By defining the tangent line as the best linear approxima-
tion to the graph of a function near a point, [Bivins] has narrowed the gap, always treacherous to students, between
an intuitive idea and a rigorous definition. The subject of this article is fundamental to the first two years of college
mathematics and should simplify things for students...." (Emphasis added). Nevertheless, the intuitiveness of the tan-
gent-as-limit-of-a-secant remains often unquestioned. For instance, in an article advocating Carathéodory's definition
of the derivative [14], the linear approximation definition is merely mentioned as a "variation" to be found for
instance in [5] and [19] even though"[t]his approach has the intended additional benefit of making transparent the
linear approximation of the tangent line".
                                                

1  These two aspects, the Gateau or directional derivative, which in dimension 1 is the rarely introduced sided-
derivative, and the Frechet or total derivative, which, in dimension 1, is identified to its (1x1) matrix, are indeed merged in
the conventional treatment of dimension 1 and therefore hard to distinguish. Moreover, the terminology is not consistent
when we go from dimension 1 to dimension 2.

2  A theory of abrupt changes is provided by Catastrophe Theory.
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In any case, Lagrange's approach is simply the extension of this idea to the use, algebraically, of best polyno-
mial approximations and, geometrically, of osculating curves of degree n.

1. Preliminary. A function f can be as simple as a polynomial or as complicated as a fractal. Thus, a natural
idea when studying f (x0+h), the value of f near a point x0, is to try to separate a principal part, that is a part smooth
enough to be relevant to the information being sought, from a remainder, a part too small to be significant in that
regard. We thus distinguish P(n)(x0,h), a polynomial part of degree n in h = x–x0, and a remainder R (n)(x0,h) small
enough that, compared to P(n)(x0,h) and for the given purpose, it can be neglected. Henceforth, we shall take the ref-
erence to x0 for granted and just write

f (x0+h) = P(n)(h) + R(n)(h)

where P(n)(h) = A0 + A1h + A2h2 + ... + Ann and R(n)(h) = o[hn] which we read as saying that R (n)(h) approaches 0

faster than hn, that is limh∅0 
R (n)(h)

hn   = 0; graphically, this means that the graph of |R (n)(h)| is under the graph of

|h|n in a neighborhood of 0. In other words, we are using asymptotic expansions (as opposed to series expansions)
with the power functions as gauge functions [10]. For beginning students it is enough to point out that the
principal part carries the relevant quantitative information and that the remainder carries only the qualitative
information that P(n)(h) differs from f (x0+h) by a small amount and just write f (x0+h) = P(n)(h) + (...).

2. Qualitative considerations. Since constant functions have no jump, it is natural to ask what can be
said of a function f whose principal part is a constant function, i.e. that is such that f (x0+h) can be expressed as the
sum of a constant part plus a part small enough not to cause a jump:

f (x0+h) = A0 + o[1]

Note that A0 is unique as any other constant approximation will yield a worse remainder and that in fact A0 = f (x0).
So, we say that a function is continuous at x0 iff it has a Best Constant Approximation BCA f near x0. For in-
stance, to show that f (x) = ax2 +bx +c is continuous at x0, we write

 f (x0+h) = (x0+h)2 + a(x0+h) +c

= [ax0
2 +bx0+c] +h[2ax0+b +h]

The first term is f (x0) and it is easy to see, or to prove, that the second term is o[1] as h∅0.

Similarly, to show that f (x) = 1
x–2  is continuous at x0 ≠ 2, we compute f (x0+h) = 1

x0+h–2  and divide in ascending

powers of h:
1

x0–2 

x0–2 +h   1

  1   + h
x0–2 

       – h
x0–2 

so that f (x0+h) = 1
x0–2  – h

(x0–2)(x0–2+h)  = f (x0) + o[1] as h∅0.

Thus, continuity, a calculus notion, appears here as a generalization of constancy, a precalculus notion:

DEFINITION. A function is continuous iff it is locally approximately constant.
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If nothing else, this makes it immediately plausible why a function continuous over a closed interval should be
Riemann integrable.

Almost by definition, we have:

THEOREM. If f is continuous at x0, then if f is positive (resp. negative) at x0, then f is positive (resp. negative)
near x0.

Since the average rate of change of an affine function between two points is independent of these points and
therefore constant, it is natural to ask what can be said of a function f whose principal part is an affine function, i.e.
that is such that f (x0+h) can be expressed as the sum of an affine part plus a part small enough not to affect the
slope:

f (x0+h) = A0 + A1h + o[h]

Since A1 too is unique as any other affine approximation will yield a worse remainder, we say that a function f is
differentiable at x0 iff it has a Best Affine Approximation BAA f near x0:

DEFINITION. A function is differentiable iff it is locally approximately affine.

so that, again, a calculus notion, differentiability, appears here as a generalization of a precalculus notion, affinity.
More generally,

DEFINITION. A function is n-differentiable iff it is locally approximately polynomial of degree n.

What can we say of a function f that is differentiable at x0? Since affine functions are obviously continuous, f is
necessarily continuous at x0. Numerically, we can approximate f (x0+h) by f (x0) + A 1h  with an error o[h] for h
small enough, but how small is small enough? We still have no bound on the error made in the approximation so
that, from the numerical viewpoint, while better than before, the information is still insufficient. Such a bound will
only be given by the Mean Value Theorem. Turning to the geometry of the graph, we would like

THEOREM. If f is differentiable at x0, then if A1 is positive (resp. negative) at x0, then f is increasing (resp.
decreasing) near x0.

But, from A1>0, if we get that f (x) is larger than f (x0) in some neighborhood of x0, we don't get that it is in-
creasing. For that we need to know how A1 changes in the neighborhood of x0 which calls for the introduction of the
function whose value at x0 is A1. Nevertheless, at this point, a local approximate  graph can plausibly be sketched:
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  x0   x0 + h

  A0 Constant Part

  A1h Linear Part

  A2h
2 Parabolic Part

  A0 + A1h+ A2h
2

  A0 + A1h

  A0

( )

 Best Quadratic Approximation
 Best Affine Approximation

 Best Constant Approximation

and from this we can see, from a qualitative viewpoint, that, when x0 is regular as in the above figure, the constant
part of f (x0+h) determines whether the function is positive/negative near x0, the linear part whether it is increas-
ing/decreasing, and the parabolic part whether it is concave up/down. When x0 is critical, that is when one or more
part is zero, the information will be provided by the corresponding next non-zero part. For instance, it is clear that,
in order for f to have a local extreme at x0, A1 has to be 0 and the next non-zero part has to be of even degree.

The graph of BAA f (x0+h) is the osculating line of degree 1 to the graph of f at x0, i.e. its tangent. Thus, to

obtain the tangent of f (x) = x
2  –   1

x  –  2   at 3, we write f (3+h) = (3+h)2  –   1
 3+h  –  2    = 8+6h+h2

 1  +  h   and divide in ascending

powers:

8 –2h
1 +h 8 +6h +h2

8  +8h
–2h +h2
–2h –2h2

+3h2

to get f (3+h) = 8 – 2h + 3h2

1  +  h   where 8 = f (3) and, since 3h2

1  +  h   = o[h], A1 = –2. In other words, we see how f

looks under x-magnification. We obtain the equation of the tangent by "delocalizing" BAA f (3+h) = 8 – 2h to T3
f (x) = 8 –2(x–3) and the equation of the osculating parabola by delocalizing the Best Quadratic Approximation.

3. How to get the principal part. For polynomial functions, we just need the binomial theorem. For
rational functions, we need division of polynomials in ascending powers to show that, away from its poles, a
rational function is locally approximately polynomial. Near ∞, we divide in descending powers. This parallels how
we divide numbers3 . Note that the behaviour of negative-power functions near 0 and ∞ is a new one and that, by
                                                

3  Any (positive) number is the sum of an integer and of a number between 0 and 1. An integer written in base 10 is a
combination of powers of 10 ordered by decreased exponents and also decreasing order of magnitude, the first one being the
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including them as gauges, we can study rational functions near their poles and ∞ just as easily as near any other
point.

If the remainder is not 0, it is often useful to have at least one non-zero "decimal". For example, near ∞, x2

x2+1  

=  1 – 1
x2  + x2

x2(x2+1)  , where 1 is the principal part, – 1
x2   is the "first decimal", and  x2

x2(x2+1)   is the remainder.

When x is near 0, we have, for example, x2

x2+1   = x2

1+x2  = x2 – x4

1+x2 , where x2 is the principal part and x4

1+x2  is

the remainder.
In the case of algebraic (resp. transcendental) functions defined as solutions of functional (resp. differential) equa-

tions, the method of undetermined coefficients gives, near the initial point, an approximate polynomial solution
whose properties announce those of the exact solution. After we obtain an (approximate) addition formula, we can
obtain approximate polynomial solutions near other points but this involves passing from the local to the global.
We thus get a good approximate local study of transcendental functions except near ∞. Once again, the behaviour of
these functions at ∞ is new and makes it necessary to include some of them as gauges. For instance, after we observe
that, near ∞, ex cannot be approximated by any power function, we include it as a gauge to study further functions.

Such a study of the approximate solutions serves as an excellent introduction to the study, assuming their exis-
tence [20], of the exact solutions carried out as in, for instance, [11], [17]; the approximate solutions can then be
shown to be the Taylor approximations of the exact solutions.

4. Quantitative considerations. The coefficients of P(n)(h) give quantitative as well as qualitative in-
formation. For example, A1 is easily seen to be the instant rate of change of f at x0: Since

A1 =  
f (x0+h) – f (x) – o[1]

h  

we have that A1 = limh∅0 
f (x0+h) – f (x)

h   . In other words, the rate of change of a function is that of its BAA.

But the notion of instant rate is not nearly as primary as is usually taken for granted and the prevalent attitude
that consists in looking at 2A2 as the instant rate of change of A1 is not particularly more natural than looking at A2
as "bending" the graph. While Galileo's principle, for instance, is usually interpreted as saying that, in the absence of
force, the velocity does not change, it can also be interpreted as saying, arguably just as naturally, that the trajectory
in space-time is rectilinear. A force can thus be interpreted as either causing the velocity to change—i.e. as causing
an acceleration—or as causing the trajectory to deviate from rectilinearity—i.e. as causing a local parabolicity which
has the advantage of being observable in f (x0+h) as well as in the graph.

Linearization indeed consists in considering intervals of time dt sufficiently small for the force not to have the
time to affect rectilinearity noticeably so that trajectories are locally approximately rectilinear. Even if dt is big
enough for the force to affect the trajectory, when the force is changing we take dt still small enough that we can as-
sume the force to be constant during that time so that the trajectories are locally approximately parabolic. Thus,
apart from better numerical approximations for f (x0), what we gain by considering approximations of degree higher
than 1 is the notion of "bending" of the graph of f (x) at x0 which, whatever else it is, should be the degree of con-
cavity of the osculating parabola4 .

5. From local to global: Derivatives. By now the need for introducing a function f ' whose value at x0
is A1 is clear: we need to follow how the coefficient A1 changes with x0. But, after this, we can adopt either one of
two courses: We can define recursively f (n)(x) = (f (n–1)(x)) ' and define a function f to be n-recursively-differentiable at
x0 iff f (n)(x0) exists. Alternatively, we can say that f is n-Lagrange-differentiable at x0 iff f has an osculating polyno-

                                                                                                                                                       
dominant one. For example, 1,349 = 1•103 + 3•102 + 4•101 + 9•100 and 1,349 ≈ 103. On the other hand, a number between
0 and 1 is written in base 10 as a combination of powers of 1

1 0  ordered by increasing exponents but also in order of

decreasing magnitude and, again, the first non-zero term is the dominant one; for example: 0.085 = 0•( )
1

1 0  
0
 + 0•( )

1
1 0  

1
 +

8•( )
1

1 0  
2
 + 5•( )

1
1 0  

3
 and 0.085 ≈ 8•( )

1
1 0  

2
.

4  Curvature is the wrong concept here as circular trajectories result from central forces.
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mial of degree n, that is if there is a polynomial P(n)(h) = ∑
k=0

k=n
Akh n such that f (x0+h) = P(n)(h) + o[hn], h∅0, and

then define the kth Lagrange derivative of f, also known as Peano derivative [7], to be the function whose value at x0

is Ak•k!5 . If f (x) admits such an approximation, it must be unique and we must have A0 = f (x0), A1 = f '(x0). It is
then natural to ask whether there is a further connection between the two definitions of differentiability and, if so,
find the relation between Ak•k! and f (k)(x0):

• If f (k)(x0) exists for k = 0 to n, then it is reasonable to consider the Taylor polynomial ∑
k=0

k=n
f (k)(x0)h

k

k!   as a candidate

for the osculating polynomial because its first n derivatives at x0 agree with those of f at x0. In fact, we have:

THEOREM. If f (k)(x0) exists for k = 0, 1, ... n, then f (x) = ∑
k=0

k=n
f (k)(x0)h

k

k!    +  o[hn]

PROOF. Use L'Hôpital's rule repeatedly on

f (x0+h )  –   ∑
k=0

k=n–1
f (k)(x0)h

k

k!

hn

n!

 

• On the other hand, the existence of an osculating polynomial of degree n>1 at x0 does not insure the existence of
any derivative of order >1 at x0: As a simple counter example [8], let

f (x) =  



x3sin1
x             w h e n    x≠ 0

0                      w h e n     x = 0
 

Near 0, f (x) = 0 + 0x + 0x2 +x2•xsin1
x   where 0 = f (0), 0x = f (0)x and x2•xsin1

x   = x20[1]. But 0x2 is not equal to

f"(0)
2!    as, from f '(x) = –xcos1

x  + 3x2 sin1
x  , we see that f"(0) does not exist and so cannot be the coefficient of x2 in

the osculating polynomial. But this needs not be a matter of concern as it can be shown that if An exists in a neigh-
borhood of x0 and is bounded either from above or from below, then it is the nth recursive-derivative of f: For the
purpose of the first year calculus, the two notions are equivalent.

The usual rules are easily proved because quite systematically: In order to find the derivative of f * g, for any *,
we just look for the coefficient of h in [f * g](x0+h). For instance, here is the proof of the quotient rule:




f

g (x0+h) =  
f (x0 +  h )
g(x0 +  h )    =  

 f  (x0) + f  '(x0)h  +  h•o(1)
g(x0) + g'(x0)h  +  h•o(1)   

and, by division in ascending powers, since o[h] = h•o[1],

f (x0)
g(x0)     

+
 1
g(x0) 



f '(x0)   –  

f (x0)
g(x0) g '(x0)  

h
g(x0) + g'(x0)h + h•o(1)  f (x0) + f '(x0)h + h•o(1

                                                
5  According to Lagrange, this is the way Newton had first proceeded except that he had omitted the k! and that,

annoyed to have been corrected by one of the Bernoullis, he started afresh.
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  f (x0) +
 
f (x0)
g(x0)  g'(x0)h

+ h•o(1





f '(x0)   –  

f (x0)
g(x0) g '(x0)   h

+ h•o(1

which gives




f

g (x0+h) =  
f (x0)
g(x0)  + 

f '(x0)g(x0) - f  (x0)g'(x0)
g(x0)2   h + h•o(1) .

Here is the proof of the chain rule:

By the differentiability of f at x0: f (x0+h) = f (x0) + f '(x0)h + h•o[1], h∅0, and by the differentiability of g at f (x0):
g(f (x0) +k) = g[f (x0)) + g'(f (x0)]•k + k•o(1), k∅0. Then,

g[f (x0+h)] =  g(f (x0+ k)) where h•[ ]f '(x0) + h•o[1]  

= g(f (x0)) + g'(f (x0))•k + k•o[1]

= g(f (x0)) + g'(f (x0))•h•[f '(x0) + o[1]] + h[ ]f '(x0) + o[1]  •o[1]

= g(f (x0)) + g'(f (x0))•f '(x0) h + g'(f (x0))•h•o[1] + h[ ]f '(x0) + o[1]  •o[1]

where the remainder is plausibly small (With beginning students, remainders can be denoted with just ellipses (...)).
For a proof, if h∅0, then so does k and hence if a function is oh[1], then it is also ok[1] and the remainder is h•ok[1].

Looking at the topology of the graph, we have the

INVERSE FUNCTION THEOREM. If f '(x0) ≠ 0 and if f '(x) is continuous at x0, then f has an inverse, defined in a
neighborhood of f (x0) and which is continuously differentiable:

 (f -1(f (x)))'|x=x0
= 1

f '(x0) 

In other words, letting ξ = f –1(x), there exists a change of variable ξ, which is continuously differentiable so that
f (ξ(x)) = x and, locally, the graph of f can be rectified (but the rectification can be quite cumbersome: For example,

f (x) = x +x3sin1
x  , x ≠ 0, f (0) = 0.) To show that f ' is differentiable, we check that f – 1[ ]f (x0)+k   is approximately

affine. We have
 f (x0) + k = f (x0+h)

= f (x0) + f '(x0)h + h•o[1] with h = k
f '(x0)  – 

h•o[1]
f '(x0)      

Then,

f – 1[ ]f (x0)+k  = x0 + h

= f– 1[ ]f (x0)   +  1
f '(x0)  k  –  h

f '(x0)  •o[1]

in which the remainder – h
f '(x0)  •o[1] is plausibly small.
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For a proof, the remainder must be shown to be k•ok[1]. From k = h( )f '(x0)+oh[1]  , h∅0 implies k∅0 and, since

f '(x0) ≠ 0, k∅0 implies h∅0 so that oh[1] iff ok[1]. Then, h
f '(x0)  •oh(1) = 

k•ok[1]

f '(x0)( )f '(x0)+ok[1]
   =  k•ok[1].

In order to classify critical points we get from

f (x0+h) = f (x0) + f '(x0) h + 
f"(x0)

2!    h2 + o[h2],  h∅0

that the second derivative test to classify the non-degenerate critical points of f is trivial as is, in this context, the
classification of all critical points: Let x0 be a critical point of f which we will assume, for simplicity, to be C∞.

THEOREM. If the first non-zero derivative of f at x0 is of odd order, x0 is not a (local) extremum. .If the first
non-zero derivative of f at x0 is of even order, x0 is a (local) extremum and, if it is positive, x0 is a (local) minimum
and if it is negative, x0 is a (local) maximum.

Moreover, using the inverse function theorem, we have:

THEOREM. Let f be, for simplicity, a  C∞ function in a neighborhood of x0, then the graph of f is, up to a
smooth reparametrization of x, the graph of the first non-constant term in its Taylor expansion.

6. Global considerations. We would also like to obtain properties of continuous functions on an interval
(e.g. the Intermediate Value Theorem). Clearly, having defined continuity at x0 by the local existence of a best
constant approximation will not help here but does point very clearly where the difficulty lies in proving a theorem
like

THEOREM. A continuous function on a closed bounded interval is bounded.

Because f is continuous on an interval, say [a,b], ∀x0 ∈ [a,b], f (x0+h) = f (x0) + o(1). Suppose h is in a neigh-

borhood of 0, whose size depends on x0, such that o(1) < 1
10  for example. If we knew that we could cover [a,b]

using finitely many of these intervals, say N, then f (x)–f (a)   would be bounded by N
10  and the theorem would be

proved. This raises the question as to whether, from any open covering of a closed bounded interval, we can extract a
finite one and, indeed, we do need compactness to prove Rolle's theorem.

In this context, the Mean Value Theorem is seen as a remainder theorem, that is as providing us with bounds on
the error made when we approximate f (x0+h) by f (x0) by saying that, when f is differentiable, the remainder R (0)(h)
in f (x0+h) = f (x0) + R(0)(h) is of the form h•f '(c) with c between x0 and x0+h. This is of course a special case of
Taylor's formula with remainder, also called Extended Mean Value Theorem and due, significantly, to Lagrange:

f (x0+h) = f (x0) + f '(x0)h + ... + 
f  (n)(x0)

n!  •hn + R (n)(h)

in which R(n)(h) = f
 (n+1)(c)
(n+1)!   hn+1 with c between x0 and x0+h. It gives as an easy consequence that if f '(x) = 0 on

(a,b) and if f (x) is continuous on [a,b] then f (x) is constant, and that if f '(x) > 0 then f (x) is increasing and, with
some work, L'Hôpital's rule.

IMPORTANT REMARK. Even if first-year calculus students are not likely to make this confusion, we should

stress that ∑
k=0

k=n
f (k)(x0)

(x–x0)k

k!    is not to be thought of in this context as the nth partial sum of a Taylor series. When

writing
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f (x) = ∑
k=0

k=n
f (k)(x0)

(x–x0)k

k!    + (x – x0)nRn(x0,x – x0)

the remainder, (x – x0)nRn(x0,x – x0), for x0 fixed, is a function of two variables, x and n. In order to try to make it
small, we can do either one of two things:

→ For fixed n, we can make |x–x0| small (this was our viewpoint). For example, by integration by parts, we have:

⌡
⌠

0

∞

e–t

1  +  x t dt = ∑
0

n
(–1)kk!xk  + (–x)n+1⌡

⌠

0

∞

e–t•tn+1

1+xt dt 

If x≥0, the last term is, in absolute value, less than or equal to (n+1)!|x|n+1 and even though the absolute value of
the remainder approaches ∞ as n∅∞, for fixed n, it can be made as small as we wish by choosing x close enough to
0.

→ For fixed x, we can try to make Rn small by letting n∅∞ which leads to analytic functions theory. The theory is
not local anymore as we are approximating f is a fixed neighborhood of x0.

6. Integral calculus. In standard freshman integral calculus courses, the Riemann integral is the one new
idea of mathematical importance and most textbooks motivate its study by the need to define the notion of area. In
the present context, it is more natural to follow Picard [18] in motivating the relation between the antiderivative and
the definite integral:

"Integral Calculus was born the day one asked the question: given f (x), does there exist a function whose
derivative is f (x), in other words a function which satisfies

(1) dy
dx  =f (x)

This question was at first answered by a geometrical interpretation which, even though it had no value in itself,
helped greatly with the solution of the problem: One graphs first the function f then one considers the area bounded
by this curve, the x-axis and two parallels to the y-axis, one fixed, the other one variable. One then shows that the
area, considered as a function of the x-intercept x of the second parallel is a function of x having f (x) as derivative. It
is clear that, unless one assumes that the notion of area is given, the problem has not been solved rigorously. We
assume f continuous. The following considerations lead naturally to the algebraic expression which plays a
fundamental role in the Integral Calculus. Assume, for a moment, the existence of a function y satisfying (1), with
y(a) = y0 and y(b) = Y. Subdivide the interval [a,b] in n intervals and let x1, x2, ... , xn–1, be the x-coordinate of the
subdividing points. Let y1, y2, ... , yn–1 be the corresponding values for y. If the interval x1–a is small enough, the

quotient 
y1–y0

 x 1–a  is very close to f (a) and we have the following equations which hold only approximately:

y1–y0 = (x1–a)f (a)

y2–y1 = (x2–x1)f (x1)

:

:

:

:
Y–yn–1 = (b–xn–1)f (xn–1)

Adding them up, we obtain:
Y–y0 = (x1–a)f (a) + (x2–x1)f (x1) + ... + (b–xn–1)f (xn–1)

This holds only approximately but, hopefully, the approximation will get better and better as the number of in-
tervals increases and the length of each one goes to 0. We are thus led, given a continuous function f, to study the
sum  (x1–a)f (a) + (x2–x1)f (x1) + ... + (x2–x1)f (x1)." (Our translation).
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In other words, stressing the "antiderivative aspect" is more important, at this point and for most calculus stu-
dents, than stressing the "measure theoretic aspect" which, in practice, devolves into teaching integration techniques.
Among other things, the antiderivative aspect leads directly to the indefinite integral ∫ f  consisting of all antideriva-
tives which, in multivariable calculus, leads to the notions of potential and exactness of forms.

7. Dynamical Systems. Of particular interest for students intending to pursue a career in sciences other
than mathematics, physics or engineering, is the fact that the basic attitudes developed by the above treatment are
precisely those needed in the study of Dynamical Systems, the first place where real applications become feasible,
and which can therefore follow immediately the differential calculus sketched above.

Roughly speaking, the study of Differential Equations can be pursued from three different points of view: i. The
computational view point where one searches for solutions in closed forms and/or series solutions, ii. The numeri-
cal view point where one develops algorithms to compute solutions numerically and iii. The qualitative viewpoint
where one studies the geometrical features of the solutions. Until Poincaré, the computational aspect dominated al-
most completely the subject. In fact, it still holds a great attraction for many applied mathematicians and has even
recently provided some spectacular insights in some long standing problems (e.g. Korteweg-de Vries equation, soli-
tons). But, even in the rare case when a solution in closed form or a series solution can be found, and when the prob-
lem is therefore usually considered to have been solved, the solution is usually in so complicated a form as to neces-
sitate difficult qualitative methods of investigation to describe its behaviour. In contrast, a direct study from the equa-
tion and the phase portrait is often quite feasible [3].

When studying differential systems of the form dx
dt   = f (x,t), where x:Rn∅R , n = 1, 2, 3, generally arising di-

rectly from modelling applications, the goal is to obtain as much information as possible on its solutions and to
present this information graphically. This involves going from a local viewpoint to a global viewpoint. As such,
this is a completely natural continuation of the way, for instance, Lnx is studied here, that is as the solution of the
Initial Value Problem :

 



x '  =  1t
x(1) = 0

 

Naturally, we start with linear systems which we then use to approximate non-linear ones near their singular
points because it is quickly realized that, locally and away from singular points, the flow of a dynamical system can
always be "rectified" so that its local behaviour needs to be studied only in the neighborhood of the singular points.
Once again, this is strongly reminiscent of results stressed earlier on and the approach is therefore quite a natural one.

In conclusion, the treatment of differential calculus sketched above, followed by such a study of Dynamical
Systems, constitutes a self contained, compact, conceptually satisfying sequence that is completely accessible to
"just plain folks", given that it ultimately rests only on algebraic skills. Yet, it is intellectually uncompromising
and, as such, it should afford prospective mathematics majors a solid basis on which to proceed towards advanced cal-
culus.
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